
D)EPARTMENT 01 STATIS-ICS

* 0 IIARVARD UNIVFRSITY

! tAN EIIPIRICAL STUDY OF THE IIALF-NORIMAL PLOT

by

DOUGLAS A. WMIN

gD D

'•Z•Rapividuled by

NATIONAL TECHNICAL
INFORMATION SERVICE

S•ringfiild, V &. 22151 B

Technical Report No. 35

September 1, 1971

Contract 1400014-67A-0298-0017, NR-042-097

This paper is the result of research supported by the 7'
Office of Naval Research. Reproduction in who3.e or in
part is permitted by the U.S. Government. Distribution
of this document is unlimited.

DISTR!BUTION STATEt. ENtt A

Approvod for puble n~saw -



FF-U ~- -

UnclassifLiedr

Securitv Cinssificatinn

DOCUMENIT CONTROL DATA. R&D
(Soeuito It C lt sa .. a Il a Is 1 :. hod' ot a h. C 9 to nt&d Mile a ng onlo I& tiof Mu 4 t * an togfet. a.n th .vs,all it e it t. cIto..dfle d)

I. ORIGINATINGo ACTIVI!Y (Corpotato author) 10. NtCPOAI SCCUftITV C LASSIrSCA T8004

Harvard Univer~sity

Dlepartment of Statistics 1660b

'Arnihidge~-Mascuet
1.REPORT TITLE

AN EMPIRICAL STUDY OF THZE HALF-NORMAL PLOT

4. DESCRIPTIVE NOTES (type *I te$Pois and Inclusive do$*@)

Technical Report; September 1, 1971
$.AUTHOR($) (Loeu own.. fit.I noom#. linitial)[ ZAHN DOUGLAS A.

1REPO PT DATE 70. TOTAL NO. or parts 76T. No. 0 CPS
September 1, 1971 . 43 T

60. CONTRACT OR G.RANT NO. 90. @RSOINAIOWS RIEPORT NUS414[R(S)

N00014-67A-0298-0017Teh ca RpotN.3
66 PROJECT NO.Tehia RpotN.3

- ~NR-042-097 aS(Aieeawbe ae'VeesE

10 A VAIlfASILITY/LIMITATtON NOTICES

Distribution of this document. is unlimited.

1.SU-PPL CNIMETARY. NOTES 112 SPONSORINd. MILITARY ACTIVITY

Logistics & Mathematical Statistics

J6. ABSTRACTIF

Mone Crl stdis o th oigial Dept. of-the Navy, Washington, D.C.
Mone Crlostuiesof he rignalversion of' the half-normal plot (Daniel,

T~bn~etric.1. (1959) 311-341:) ind two new versions are reported. Data representativ
of the 15 contrasts from a?~ p-q = ,factorirl exprriinent. are generated. Design
parameters are ~,the experiinentwise error rate, r, th. number of real contrasts
present in the 94eprmn, and mn, the size of the re.-1 contrasts present. Studies
are made for designs with a-= .05-, .2C, .40, r =0, 1, 2, 4, and 6, mn = o(2a')80, where
a is the standard deviation of' a contra.*t.U

We give critical values for the various versions uhich control the experlmentwiseerr-or rate. These critical values are considerably different than those given by
IDaniel.

Detection rate, i.e., the proportion of real' coatrazts declared significant, false
positive behavior, arl estimation of a are examined, -1-he Mlonte Carlo studies indicate
that one of the new versions is superior to the original version. The detection rateIof all versions decreases drastically when r increaaes froam one to two to four. o'hnenseveral~ small real contrasts are present, the sensitivity can be inc~reased and the
magnitude' of the average errors in estimating a can be greatly reduced by using
01-3 .2 or A4, rather than a = .05. 4

Nomination procedures for analyzing a single replicate 2 factorial experiments

Lhove a smaller detection rate than 
the half-normal plot with an equivalent, 

experiment-

in the 24 experiment.

DD 1473G Unclassified
Security Classifical~on

- - -- - - -- -



AN EMPIRICAL STUDY OF Tilt HALF-NORMAL PLOT

by
Douglas A. Zahn

Florida State University

1 . INTRODUCTION !7

The half-normal plot as introduced by Daniel (1959) is a multi-

purpose tool for criticizing and interpreting the contrasts yielded by I

a single replication factorial experiment. It gives us a means for
•= ~approaching-the folloving general problem: !

LetthestaisicsYlsY2 009 YInbe independent,*-l

Inormally distributed random variables with means 12"

nand coaon variance-a . Assume that at most r Qf the

Ut are- non-zero, where r is small relative to n, and that we

have no prior estimate of a. Given Yly *Y e t y" n (singe

observations of each of the n random variables), (1) decide

which, if arq, of the pi are non-zero and (2) estimate a. P

This problem arises in many contexts. The motivating one was

single replication factorial experiments where we can think of Yi as

a contrast estimating the effect u1 of a factor or interaction between

factors in the experiment. The half-normal plo.. can be used to decide

which of the u1 are significatatly non-zero. After the significant con-

trasts - been isolatedwe can then use the half-normal plot to esti-

mate a _ .ra the -insi~uificant contra .:.

Birnbaum (1959) invoutlgated the probability that the half-normal -I

=H

I ____ - . ,• •,••• -•:• -• • -. • • .• •
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plot will detect a single real contrast, i.e., a contrast with mean

0 0, when n = 31. Hlund that it coapared well to the mltiple

t-test in this situation. However, he warned that his findings rested

heavily on the assumption that only one real contrast was present. He

-also warned that if more than one real contrast was present, the power

of the plot may be greatly reduced. This report presents results of

a Monte Carlo study of Daniel's original -version of the half-normal

- plot-and two modifications o1f it when as many as six real contrasts of

size lo to 8o are present in--a 2•pq, -q-=, 4-factorial-experiment.-

Th*, we -consider the power, false positive behavior, and variance

estimation of these versions of-the half-roral plot when they are -

applied to the general problem in the ca,. n - 15, since there are 15I~4-
contrasts of interest, ignoring the grand mean, in a 2 factorial

Sexperiment. However these versions, or-obdvious modifications of them,

can be used for aky n. The cases n =8, 9, ... , 15 can be analyzed

using iritical values in Table 3.1. Critical *alues f~r other cases

can be constructec using procedures described in Section 3. Additional

results are rresented in Zahn (1969) and are available from the author

no request.

2. VERSIONS OF THE HALF-WOMML PLOT

To investigate the effects of moditying various steps of the

- - bslf-norLiJ plot on sensitivity and variance estimates, we have in.-

-cluded a coaarison of several versions of the half-normal plot in

our !4oute Carlo investigation.

- . .4.- -



2.1 Veftio:X tete1 otat.;:o h

absolute- values of te1obevdcnrs.Dideheorderj

statistics by r~, the initial estimate. of a. In this version

SB x Tohis produces a set ofstandardized ore tatiaticej

-. t2 < Ct1 5 , which are also used as test statistics to

exaa5.ne teorder statistics for significance.

-This set of scale-free order statistics ua' be plotted onaIrevised standardized-half-normal grid, iPlustrated-1.n-igure 2.1.

The- .05, .20, and 40 level critical.. values for this version- a re

indicated by the- points -on the grid which are connected by lines to

form the .05, .20, and .1.0 level guadails respectively. This grid

j differs from the standardIzed balf-fiormal -grid given in Daniel (1959)

In three vqys.

1 (I)- 7he standardised order statistics are plotted as the
ordinate, rather than as tle- abs cissa, as lt -Dianiel

(1-959), to make the half-,normal plot correspond more

closely to the usual regresionm gra*k on which the
random variable 4ýs plotted as the ordinate. I

j(2) To take advantage of benefits cited by Fergm-on (1960),,

the standardized order statistics are plotted against I
the mean of the order. statistics of a ra-dom amaplefIof size 15 from tesadr af-omldistribution.t

jand are given in Table 2.1 fbr saples of nizes 1(1)15,

j (3) The guardrails given on the revised grid differ con- - j
siderably from those-on the grids in Daniel (1959).,
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TAB3LE 2.1

Heana o6 thet W'~et S~tcatiatie oj ftwind Sam~ct,,t o6 Size..

I - -2~..., 7 Fitwm the Standw'.d *ffa4-flo~zra VU.#a~Iution

L •- The table entry in row i and colmnm j is m(ij) = the

mean of the i order statistic in a random sample of

size 3 from the standard half-nornal distribution.

j 1 2 3 14 5 6 T

f1 0.798 0.467 0.335 6.262 0.216 '%,183 0.360

2 1.128 0.732 0.553 o.44138 0.377 0.326

- 3 1.326 0.911 0.712 0.589 0.50o4

4 1.);65 •_.•04 0.835 0.702

5 1.570 1.14q 0.9314

6 1.654 1.235

T l.T2b

I--



6

TABLE1 2.1, continued

8, 9, .. , 15 V~m--zte S.tudnad fa-towu.t ,Ala~ht..on

The table entry in row i and colurm j is m(i,j) = the mean

of the ith order statistic in a random sample of size _

from the standard half-normal distribution.

"8 9 16 11 12- 13 14 15

1 0.14 0.13 0.12 0.11 0.10 0.09 0.08 o0.08 1

2 0.29 0.26 0.23 -0.21. 0.20 0.18 0.17 0.16

3 O.•4 0.39 0.35 0.32 0.30 0.27 0.26 0.24

0 o.61 0.54 0.48 o.),h o.4o o.3T o.34 o.32

5 0.80 0.7o 0.62 0.56 0.51 0.4T7 0.44 0.4

6 1.02 0.88 O.77 0.69 0.63 0.58 0.53 0,50

7 1.31 1.09 0.94 0.84 0.76 0.69 0.64 0.59

8 1.78 1.37 1.15 1.00 0.90 0.81 0.714 0.6Q

9 1.84 1.42 1.21 1.06 o.w5 o.-6 0.7')

1.88 1.47 1.25 1.11 1.00 0.91

11 1.92 1.52 1.0 1.15 1.04

12 1.96 1.56 1.34 1.19

.13 1.99 1.59 1.38

14 2.02 1.63

21 2.05



Mhe computation of our guardrails and the error rate

they are intended to control are considered in Section 3,

S•Table 3.1 gives the critical values on which the guardrails for

this verst.m and the subsequent two versions are based.

S•The detection process is a sequential statistical procedure in

S~that whether contrasts are tested for significance late In the pro-

Scess deper• on results observed early in the process. Wet first AA

Stest N15 for significance by cowparing test statistic 15 tl 15

-5 1- - 15 15 151 -15

is declared significant and we then examine t14. We continue testlif

Scontrasts until one is declp~red insignificant or until a maxinam of

ifour- contrasts are delae significant.

S~If desired, the detection process can be carried out without

1< 7

graphing the order statistics. need merely oa .a thute the approrrirte

test stathties and coit e them to the critical values e Of coursen
Sthe ablte of the plot is that it also enables us to exaine -the -gfon-

trusts for the adorath ties discussed by Daniel (19o9). e

The detection process divides the contrists into ti o sets:

hsignificant contrasts ane tensitedfoant contrasts. The lattei set

cill be referredonr sult ror contrasts becausv ee pocalculate 8fi our

contras ts, We plot on ordinary linear-bylinear tra.h papernt

f, desi.ed, he danst m(i,e), p rc s, ca b e. ca ere u(i,e)

denotes the mean of the ir orer statistic In a randou stmple of size

• from the standard hclf-norml distribution. We fil the s eO t squarse

regrtesson line through the origin of x on e. The slope of this ane
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is sf. the final estimate of a Which should not be confused vith s.s

the initial estimate of a,

Tho cases n 14, 131, and 12 can also be examined using this

version vith xif.as the 4test statistio 4anoninster and the critical

values in Table 3.1, provided that the researcher is villing to aosaea

that no more than t=ree, two, or one real contrests are preser-t,

respectively. For instance, if n - 13, the first test statistic is

t1 3 = x,3/x3 a its .05 level c.itical v.alue is 2.36; the second

-and its .5level ciitical value is 1.94.

2.2 VWzIOn S

Versions S and, X onlyý differ with repc-t the test-statistic

4aminstou used Auring ths detection process. We definexi 2SL~k~j) (ij) I'M J) 1 9~)J k.1J.

The stat.ati,- SLlU15) is used as test -statistic denominator by

version S. This is the rlo t~l t sqpsres regression line

through the -origin of x on a fitted to the points [2(i,15),xil,

i = I, 20 ,4,, U1 For this version, the standardized order statistics

ar6 t 1 5 a z5/SL(U1115). etc, Thus, the test statistic denominators

at version t should be less variable estimators of a than the test

statistic denominators of X, since the denominators of S are based

on more inforwation. Hence. the guardrails on the revised stan(ardized

- halft-norsl grid for version S1t1-4'trated In FIgure 2,2 -differ from

tiese on the grid for version X. Again, fbur it the maxiau v nuber

of contrasts vhich any be Oselared signtficanto The final estimate

- -•- -:-#
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of.- is obtained exactly as it is by version X. Using the above

notation we see that, if there are e er-ror contrasts, sr SL(e,e).

2.3 V~taon R

Only one or three other half-normal plot versions in-

vestigated in our Monte Carlo study urili be considered h-.re. The

first step in version R is to compute the standardized order

Sstatistics t. : i/SL%/',,15), i = 1, 22 ... , 15, Here the test

statistic denominator is the least squares li.e through the origin

fitted ";o the smallest half of the contrasts being tested for

significance. If 1 is declared significant, the remainder of

the detection nrocess in this version differs considerably-from the

detection process in versions X and S.

We reassess our position every time a contrast is declared

significant. This step reflects the fact that a contrast appearing

significantly large alters our assessment of the state of nature.

If is declared significant, we then e..nine the remaining 14

absolute contrasts under the hypothesis that they constitute a

random sample of size 14 from the hulf-normal distribution. These

14 order statistics are restandardized by dividing by SL(7,14) which

is an unbiased estivate of a under this hypothesis. We nov compare

the restandardized value of to the appropriate critical vakue,

If it is de61&aid significtnt, we concentr-.te on the -:,:-lning 13

absolute contrasts, considering them as a random sample of size 13

from the hal'f-normal distribution. Vie restandaru-dize them by diviling

by SL(6913). If xV~ is not declared significant, s•. is computed as

before from the 14 error contrasts. -



Another difference between this version and the previous two

is that R may declare as many as seven contrasts significant. To-

gain this additional flexibility, ire have based on tha test statistic

"j denominators on at most the-seven smallest absolute contrasts.

3. CRITICAL VMLUE FOR THE HALF-HORI0&L -PLOT VERSIONS

Before any version can be used, we need critical values for

judging the test statistics. Clearly, each version requires several.

critical values since each may declare more than one contrast

significant. The a level critil.al vnlue for a given test statistic

t is defined to be the (1-ct) quantile of itb distribution under the

hypothesis H: all contrasts currently being tested for significance

have means u 0. For example, for t 1 3  x 3 /Xll for version X,

the .05 level critical value is the .95 quantile of its distribution

under the hypothesis H: the 13 contrasts being tested for significance

all have means u 0. Table 3.1 pives .05, .20, and .40 level

critical values for all versions. We determined these critical

values by generatinp. an empirical distribution based on 999 simulations

fbr each test statistic and estimating the .95, .80, and .60 quantiles

by the corresponding quantiles of the empirical distribution.

The precision of our estimated quantiles can be evaluated usilig

methods described by Wllks (1962, p. 331). We are 90% confident

that the critical values given in Table 3.1 are correct to vithin

+_.10, except for the °G5 level critical values for version R. We •

are 90% confident that these values are correct to within + .25.

.10,excpt or te .5 lvel ritcalvalus fr vrsio H.We
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TABLE 3.1

.05, .20, ,and: .40 Lever C(!Ait.w V .Vue4 oj the TeAt Vi.W6 Ued ABy

AUL VOe~ona.

These a level critical values are the corresponding (i-a) quantiles of
the simulated emiirical distributions.

eTest StatisticS1 "Version Level a ....
• 15 t4 t13 't:12 tUl tlO t9

.05 4: 13 4.il 4.31 b.17 4.43 4.15 h.69
R .20, 2.94 2.89 2.96 2.92 2.94 2.84 2.901.0 2.32 q.26 2.27 2.22 2.22 2.15 2.13

.05 314 2.83 '.36 1.914
x.20 2.148 2.21 1.91 1.514

2.08 i.67 1.6o 1.31

.05 3.3? 3.0) 2.61 2.21
S .20 2.61 2.34 2'06 1.76

.4,n 2.20 1.97 1.76 1.51

+ I5
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What aspect of the false positive behavior of a version is

controlled by the criticaJ, values used obviously depends on the choice

of critical values. The aspect we chose to control is the error

rat4 per experiaent (EER). The EER is defined to be the probability

of declaring at least one false positive in the analysis of one

experiment. It is eesy to see that these critical -valucs control the

EER if no real contrasts are present. In this situation we declare

at least one false positive if and only if we declare the largest

contrast significant. This nccurs if t%, the test statistic for

{ examining xn , is larger than cn, its a level critical value. But,

nis the (1-a) quantile of tn under the hypothesis that all n con-

trasts bei g exam ined have means u = O . Hence, EER = P(tn > cn) .

Using the (1-m) quantiles as a level critical values in general

situationsve have proved the following theorem for n s 2 and n = 3.

Theorem: The experimentvise error rate (EER) of

the half-normal plot using a level critical values is

<a, regardless how many real contrasts of various
sizes are present in the experiment being analyzed.

The proofs for these cases and much empirical support for the case

n - 15 are present in Zahn (1969).

I t e tis3.1. t&A est sttisc i the critica tglu s VrteAspne d C i teaL Vat o 3se
and VanaiiW C~itiW Va&LeA

Since version X and-the original version of the half-nformal plot
" I iuse identical test statistics. critical salues corresponding to those

estimated by t3ý. simulation results fbr version X con be read from the
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guardrails of Figure Ila of Daniel (1959). When no real contrasts are

present, Daniel's guardrails and the simulatted guardrails will yield

approximately the same EER. However, if one large contrast is present,

Daniel's .05 guardrail may yield an EER as large as .20. Daniel refers

to his .05 guardrail as having a"rejection rate' of .05. The large

difference between the "rejection rate" of Daniel' . guardrails and the

-E R actually yielded by those Cardrails persists when more than one

real contrast is present. An experimenter usine Daniel's original

version of the half-normal plot should definitely be iware of this

deficiency in the critical vAlues presented in Table lla of Daniel

(1959).

),THE MAIN SIIIUATION STUDY

Using the critical values from Section 3, we have performed

computer sampling experiments to investigate the detection rate,

error rates, and variance estimation of the half-normal plot and to

compare the three versions described in Section. 2. A

4.1l Situationa Exrmined

This section defines the notation used tc describe a given

"situation" and lists all situatons which were examined. A situation

is a specification of the nmber and sizes of the real contrasts pre-

aenet in the experiment. We assume that tha state of nature and the

experimental design are such that all tbodel. I Mova assumpti-.s are J

satisfied.

In the sixplest situation, the null situation, all 0 0. The

null situation, denoted (0), represents the state of nature w.en the

• -•ffi .... > .........
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of the ji 0 . Daniel (1959) and Birnbaum (1959) investigated

s$ituations'in •hc n tranged from la .to 6cr. We consider situ-

ations i.' which from one to six of the v are non-zero. A situation

with as many as six real contrasts might occur, far instrnce, when an

experimenter encounters a 2 fractional factorial experiment in

-vhih- four-main effects, along with two of the two-factor interactionts,

With more than one real contrast present, the situations easiest

to characterize ame those in vhich contrasts of only one size are --sent.

je refer to these as Type I situations and consider them in Section

5. We define (r,m) to be a situation in vhich there are r real con-

trasts, each of size m. Thus (4, 6 a) implies four non-zero contrasts,

each of size 6a.

In Section 6 we consider Type II situations, i.e., sitmations

vith real contrasts of two-different sizes present. We define

(ri,u,;rs 2 ) to be a situation in which there are r1 real contrasts,

each with mean al, and r real contrasts, each with mean =2, For

instance, (2,6o;2,8u) iuplies four non-zero contrasts, two of size

Go and two of size 8a. The remaining eleven contrasts are null,

i.e., each has mean zero.

We define an r-situation to be a Type I situation with r non-

zero contrasts. Thus, (4,6a) is a P.articular 4-situation. Similarly,

ve define an rl-r 2 -situatikn to be a Type II situation in which there

are ri contrasts of size 1! l 0.0 and r 2 contrasts of size m2 0 O.0. -

1 71
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The %bin Stwkdy examined Trype I situations (r~m), where

' - 1, 2, 4, 6 and n = 0(2a)fii. We also examined Type II situations

2 here1 2= r , 2; =1 = 2a, 4a, 6o; and m ,.s2 =

4ao 6a, 8e. we slmiirated each situatlon 1000 times and analyzed

the simulated data using each version with each of three critical

vaue lewils: a =0.05, 0.20j, and 0.40. - T-6-discuss the performance

of version S in analyzing- ..*•.rlments with 2 real contrasts of size

60 present, we will, for brevity, refer to results for S in (2,0o).

The pseudo-random. standard normal deviates used in our simulation

studies were generated by -the-Harevard- Computing Center's RANDOH

function subroutine which is available on the TSYS, Fortran IV

system using an IBil 7090/4 computer.

1 ~~4.2 The ExpexbvAentu Ve~ian
The !fin Study may be viewed as a factorial experiment in which

t herc are three factors, vercion, a, and situation, at 3, 3, and 29

levels, respectively. For each situation wv- decided to examine the

three versions at each a using the aame l00*, sets of 15 rsnd. Hence,

in each situation we introduced a positive correlation between the

results for each version and increased the precision of comparisons among

the various versions in the same situation. This design is analogous

to a split-plot or nested design in which the factor "situation"

is applied to the whole plots (each independent set of 15 rand 4

generated in one simulation of 2 experiment constitutes a whole i

plot) and each version at each a is applied to one sub-plot. The

sub-plots are sets of simulated contrasts, each set being identical
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to the set of 15 incremented rsnd produced when the 15 rsnd which

,' constimujted the whole plot are modified according to the situation

S~~being, simulated. °-

The detection rate D(S) is the avera-ge pr-oportion of real con-

trasts present in situation S which are detected, We use the statistic

• d(S) to estimate D(S), where

••~~A j 1) pljllr, ati4

I-
p(j) = (number of simulations in which exactly j of the r reea contrasts A

were detected)/1000.

We need to consider extensions of this criterion to measure a

vernion's detection ability in Type II situations. Obviously, two

detection rates, d, and d2 , are useful in Type IT situations, where

di(ri,mp;r 2 ,m2 ) = (number of size mi contrasts detected in

the 1000 simulations of (:-1 ,ml;r 2 ,M2 ))/lOOOri,

i = 1, 2.

Another vital aspect of a version's performance is its false j
positive behavior. One criterion here is the experimentvise error

rate (EER). Recall that this is the probability of at least one falseIg
positive per experiment in situation S. It is identical to the

probability error rate of Itiller (1966). We use the statistic

fl(S) to estimate the EE, nhere

fl(S) = X q(j), and

S2
IJa



number of simulations in which exactly j of the
15-r null contrasts are declared significant

The sum runs to 15-r because, if r reul contrasts are present, it is

-imposstbl - to declare more than 15-r false nosittives. RestricTions 2W

built into the procedurz for a pa-ticular hclf-normal plot version

often set the maximum number of false positives at an even smaller 1

number.

Another criterion relating to false positive behivior is the

average number of false positives per eiperiment in situation S,

uhich we refer to as the error rate per experiment (ERPE), using the

terminology of Hartley (1955). It is identical to 'aller' (3#966)

expected error rate, if the 15 statements being made about the

'4significance or insignificance of the 15 contrasts in one 29

faetorial experiment ake viewed as a family, in :nller's terminology.

-We use the statistic f2(s) to estimate the L:PE, where

15-r
f2(S) = q(j).

For evaluating a versi.on's final estimate of a in a given situation

the criteria are the obvious ones* sf, te mean of the version's

1000 final estinates of a in this situation, and s2(sf), the variance

of these estimates. The first criterion enables us to estimate the

bias in the estimates of a and to observe how this bi3s changes

from situation to situation. The second criterion provides an

estivate of the precison of the entire variance estimation process

and faacilitates efficiency comparisons.

g32&:S
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This report concentrates on the mea.ures d, 1t, and sf. Results

for the other measures and two additional versions not reported here

are given in Zahn (19-69) and are available from the author on request..

5. THE EMPIRICAL BMVIORS OF VEZIOIS X, S, AND II IN

in the null situ tion PIP-I- -SIfUTiJIONS fra .5 2,.0

We discuso the empirical behaviors of versions X, S, and R
in the null situation and in.1-situations. for a - .05, .20, .40. A-

Since differences among the versions and the performance measures are

wch the same in 2-and-4-situations as in 1-situations, re consider

only one version, version S, in these situations and er'centrate

on the detection rate. In 6-situa'4ons wec onsider vrersion R, the

znIy one of any use in detecting real contrasts uhen so many are

present.

5.1 IUuU StdinReauU&

Table 5.1 gives fl, sf, and s(sf) for each version in the null

situation at each of three critical value levels: a = .05, .20, and .10.

Since the values of fl are estimates of binomial proportions, the

stantd-rd deviations of fi using .05, .20, and .40 level critical

values are approximately '.05 x .95/1000 = .007, .013, and .015,

respectively. The standard deviation of ; for a rArticular version :a

and critical value level is easily calculated by di dins the

appromriate s(sf) by 40 . Though the differences between aeveral

values of fl and their corresponding a are too large to attribute to

chance alone, they are not alarming vhen we recall that there is also A
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TABLE 5.1

fmp~ut~La v31Jm o6 fleuion.3 x, s, and P.

in the Uutt S'UtMzk0on 11649it o = .05, .20, and ho4
Critical Value Lvel

"Version re.terion _ _.05 .2o .706

rLOR.1()2 .379
;x fr .981 .9l 3 .883

s(sf) .193 .218 .238

fl 061 .181 .363
S : f ... 33 .C46 .887

s (s~f).P .214! .236

f2. .0441 .175 .359

o, *., -P *93 .855
s(sf) .19< ,230 .273

ff

IA

I3
IA
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sampling error in the estimated percentiles being used as critical

values. As we expect, a is underestimated more, on the average, for

larger a as more nf the larger null contrasts are declared significant

and removed from the final estimate of o. Mildly surprising, hovewer,

is the small negative bias (-2l.3% to -l4.5%) in sf for all versions

using .40 level critical values.

A comparison of s(s ) to the standard deviation, 1//S, of 9,
f

the sample standard drviation, based on n degrees of freedom indicates

that the estimate of' a given by the half-normal plot using a - .05 i'

as efficient as an s based on 13.4 "honest" degrees of freedom. By

honest, we mean that the variables included in the construction of

9 are all i.i.d. 1(0, 2 -). A simulation study zot -epofte-d here in-

dicated that if in (3) the half-normal plot alvays uses all 15 con-

trasts to estimate a, i.e., if it uses 0.0 level critical values,

its final estimate of a is 990 as efficient as s. Mhus, the lower

efficiency of the half-normal plot a estimates using a .05 is not

due to the fact that a is estimated by the slope of the line fitted

to the error contracts, rather than s. Instead, the source of the

inefficiency is that each half-normal plot is allowed to declare

contrasts significant and remove them from the estimate of a. Hence,

occasionally the half-normal ploft final estimate of a in (0) will

be based on 14 or fever null contrasts. This is the price we pay

SI for having the pover to detect real contrasts and remove them from

the final estimate of a. Using a a .20 and a = .40 we are obviously

more likely to detect real contrasts. but Vrte price we pay in the

C •null situation is that s is now only as efficient as an s based on

10.9 and 9.0 delrees of freedom, respectively.
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%,2 l4ituat Jon AeuuWt

Toble 5.2 describes the empirical behavior of the versions

using a .059 .20, and .40 in 1-situations. We oaa examine the pre-

civion of the results given in Table 5.2 by noting that d and tl are

vmely estimates of binomial proportions and their variances can be

esti,- ,ý by tie uwa3. formi.me. The estiMated .tsndard error of

- ~ s(;f), is obviously s(af)/ 1O00. Specific values of s(sf) are

presented in Zahn (1969), For the versions, critical value levels,

and situations in Table 5.2 the values of s(;) range from a ainidm

of .006 for all versions using .05 level critical values in situation

(1,lo) to a mudmu of .011 fbr version R using .65 level crivical values 4

in situation (l13o), with 90% of the values being in the range .OOT

to .010.

1he differences among the values of d, the detection rate, in

situations (l,lo) and (1,2o) for the three vereions are small. Versions-a

X and 8 have consierably larger detection rates than R vhen the size

of the real contrast vesent is between 3a and To. Figure 5.1

vismaszes the differences in d aong the versions for a a .05 and .20.

It further emphasizes the similarity between versions X and S and the

dissimilarity between them and version R.

Thrwugh detection- rate varies considerably from version to

version, all fl values are close to their respective 's. The1 rgest differences between fl and a occur wben the real contrast

is =all. Ivan in (1,2a) the probability of the real contrast being

is only 0.6. Thus . .ae low dtzectlon rate in this situation results

in few opportunities to declare even one false positive.
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TABLE 5.2

EnVipu~.caX u3e~hav~iir oS Veuiott& X, S~, and R

a.. .... .. . ,, IA (. .. , ,,,a.209 m

•- •Situations
Version Criterion a -i' to'

(1,1o) (1,2v) (1,31) (1,0c) (1,50) (1,6o) (1,7T) ,8a) i4

.05 .019 .1I5 .3314 .615 .862 .951) .99.h 3.0m
d .20 .060 .266 .564. .8120 n66 .99T 1.000 1.O000

.4n0 .121 4303 .730 .023 .091 .99n? 1.000 1.000

.•05 .o47 .01;') .ohn .047 .oh13 . 5 7 .

x fl .20- .153 .165 .153 .192 .17• '17r, .1-1 .191
.- 4.10 .34.0 .349 -.316 .359 .377 .346 .34o

.05 l.o24 1.059 1.098 1.084 1.031 .999 -9P,5 .993
_ .2)0 .o05 .9o0 1.o06 .)78 .n514 .0.49 Q8 .951 ,,

.ho .923 .914. .920 .90'y) -Aft .~80 .890 .805 I-

.05 .021 .105 .310 65 .8 .9 57S .9,4 1. 0.o 110
Ai .20 .063 .261 .566 .826 .965 ."ft 1.000 1.000

.4O .117 .39.9 .71- .91r .989 .9o9 1.000 1.000 --

.05 .05 .6 .0o0 .n193 .n57 .o01 .0119 .047- .050 j•
ff .20 .156 .166 .1. .207 .182 .190 .161 .106

_.40 .317 .358 .351 .3,F .383 .367 .35 . 3

.05 1.024. 1.062 2.1 . 00 1.034. 1.1 .985 .993
.20 .981 .9^>0 1.0M~ P972 .952 .9-142 .91.9 .91.6

if .4o .928 .915 .923 .898 .887 .891 .896

.05 .0i5 .08c) .216 .1.36 .638 .809 .928 .971d .20 .o(.4 .230 .469 .728 .897 .971 .993 1,O00d .4o .11;3 .412 .45A .13T .(o.O .98 1.000 1.000

"R f" .21) .1o a13 .149 .-13 .18T .17,) .160 .200
•0 .310 .366 .35T .. nl .3T2 .389 .350 .4103

.05 1.024 1.067 1.137 !.167 1.130 1.003 1.031 1.011
8 .2n .972 ,989 1.025 1.05 .9r2 .006 .942 .931

.1O .900 .881 .902 .875 .862 .81Q .861 .840

• I
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FIGURE 5.1 l

VetecUon Ra~te.6 AM Veui6on4 X, s, and R in
1-SUMUtIA~t Wiung a .05 and .20

.9805_ 1A111 11,' '.

.990 _j.jj~j ___ __
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All versions have a tendency to overestimate a, particularly

when small real contrasts are present. The bias is worst in (1,4a_) and,

for the better versions, is negligible in-(l,6o) and (1,8a) for

- .05. A striking aspect of; f behavior for all versions is 45

that ;f is not a monotone function of the size of the real contrast.

Rather, ;f increases as the size of the real contrast increases

to 33 ot a, depending on the version, ar.1 then decreases as the

size increases to 8a. To explain this, we note that while there are

fewer undetected contrasts in (1,4o) than in (1,20), the bias caused

by an undetected contrast is greater if its size is 4a than if its

size is 2a. The additional bias offsets the fact that the detection

rate is greater in (1,I*) than in (1,2o).

Version R's infer.-r detection rate affects its final estimate

of o in two rather obvious ankys: (1) Any undetected real contrast

will be included in construction of sef. Since R detected the fewest

real contrasts, the bias caused by undetected real contrasts will

be more severe for P. than for the other versions. (2) The estimates

of a vary more for version R than they do for the other versinns;

thus, s(sf) is larger for R than for the other versions.

5.3 2- and 14-Situa~tion Re~uLMt

Since the differences among the versions and criteria are much

the same in 2- and 4-situations as in 1-situations, we concentrate

here on the detection rate, perhaps the criterion of most interest

to the axperimenter, and version S. We concentrate on S since it is

generally superior to the other ve-sions, "pecially in 4-situations

fhere its detection rate always exceeded the detection rates of

-~k41
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this othr ver sions, often by as much as .07 to .15. Empirical results

for other versions and other criteria in these and other situations

appear in Zahn (1969) and are available from the author on request.

Table 5.3 gives empirical estimates of the detection rate, ERR,

. and average final estimate of a for version 3 in 1-, 2-, end -

situations using a = .05, .20, and .40. Table 5.3 also gives the

estimated standard errors of d end ef. To compute the standard error

of d in 2-, 4-, and 6-situations, we first note t'hat results for

individual real contrasts are not independent w'ithin trials. Thus,

d behaves as a proportion eitimated by cluster sampling - its

standard error can be estimated using the appropriate formulae in

Cbran (1963, p. 64).

As we expect, fbr a fixed number of real contrasts present,

the detection rate increases 4s the size of the real contrasts in-

creases. However, the detection rate decreases as the number of real

contrasts present increases. Version S has a moderately smaller

detection rate in 2-situations than in 1-situations. It has a much

smaller detection rate in 4-situationu than in 1-situations.

Examining Table 5.3 we see that increasing a from .05 to .20

yields a sizable increase in the detection rate of version S.

Increasing a to .40 yields even larger detection rates. The price

we pay for the larger detection r~tes is, of course, that the prob-

ability of at least one falme positive is much larger. Howerer,

another benefit helping to offset this cr-it is that the bias in

t decrease sharply as a increases.

.4 4
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TABLE 5.3

EmpWcAt 8t •,•ioxiog !'Vaion S in 1-, 2-, am( 14-UZtuaon with Reat ContNMU Oj

rZzeA 2a, 4a, 6 a, and 8a Pk" eat, Un9 a .05, .20, and .40.

Nu•ez of

SCon- Criterion- Size of the Real Contrasts Presenttrests at 2• [I 40 6o 8

.0 .-. o1, .o0o .605, .015 .957, wo6 1.o0, .ooo
d,s.e.(d) . .260 , .014 .826, .012 1.998, .001 1.000, .000

.40 .399, .015 .911, .009 1 .999, .001 1.000, .000

.o .o04C .057 .049 .050
fl .2 .166 .2o7 .198 .196.o o358 .386 .3671 .3%•

.05 1.o62, .oo7 1.086, .olO 01.00 .008 .990, .007
,s~e*(f) .20 .990, .0081 .972, .009 .942, O0T .946, O0T

.4 .915, .008 .898, .008 .8931, .008 .889, .008

.05 .080, .007 .539, .014 .954, .006 il.000, .000
d,.e.o(d) .20 .219, .01 .821, .010 .997, .001 10000, .000

.Ao .365, .012 .920, .007 1.000, .001 1.000, .000

.05 .023 .O44 .o46 .0*f58
2 fi .2O .1o2 .166 .181 .188

.40 .283 .3141 .335 1

.05 1.171, .008 1.233, .013 1 1.019, .010 .976, .007
;f~soe.(if) .2o 1.078, .0o9 1.016, .olo .942, .007 .939, .007

.4o .984, .0o9 .921, .003 .901, .007 .893, .007

.05 .037, .004 .270, .01: .861s, .010 .99T, .02
ds.e.(d) .20 .134, .0o7 .654, .01.3 .,, .003 1.097, .002

.4O .2)17, .009 .835, .009 ,999, .001 1.000, .000

.05 .008 .002 0000 .000

fl .20 .050 .00. .000
.1o .1A3 .028 .000 .000

.o05 1.389, .oo8 1.p,6, .020 1.2142, .024 11.001, .o08
9,ee.(;,) .20 1.282, .010 11.320, .o08 1.011, .oo9 .994, .007

.1h0 1.169, .001 1.121, .013 0.995, .o07 .9914, .007
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5. 6_Situwtion 1Z"tuW

Table 5.o summarizes the performmnce of version R using. a = .05,

.20, and .AO in 6-situations. Only version R does not break down

in 6-situations. When si- real contrasts are present, the test

statistic denominators of versions X and S will either equal or include

the smaller real contrasts. This contamination always occurs and is

severe enough so that neither version detects even e of the real

contrasts present. Since the test statistic denominators of version

R are based on at most the sevea snallest order statistics, R still

detects sam real contrasts in 6-situations. Of course, its de-

tection rate is sukeler in 6-situations than in l-Situations.

The gap between a and fl is wider in 6-situations than in

1-, 2-, or l-situations. In addition, this gap narrows as the size

of the Tea.-contrasts invsent increases.

"The bias in which is severe in 6-situations is smallest for

version R since it has the largest detection rate in these situations.

However, even for version R the bias is large. Furthermore, sf for R

in 6-situations is exceedingly variable, which is not surprising

since s9f will equal approximately 5*0 if none of the real contrasts

in (6,80) are detected and approximately 1.0 if all the real contrasts

in this situation are detected.

In these situations the bias in can be greatly reduced and

the detection rate dramatically increased by using larger ot. Hence,

we highly recomaend the half-normal plot with c - .20 or .40 level
"critical values to the experimenter who is doing exploratory re-

search and might encounter a 4- or a 6-situation.



29iii TABLE 5.4

EmpZicaiw nehtrvioa oA Yep.s&wn Ri in 6-li~tuaaio~m

(I6incj ax *05, .20, and .An

Verson riteionSituations
Vesinrteioa) (6,40~ (6,a)(6.9;

.05 .015, -.003 '.132, .010 .430, .015 .761, .0:.3

.4o .189, .009 .597, .013 .9T6, .004 1.000, OwC

.05 .005 .020 .025 o047
R Til .20 .041 .129 .190 i.177

.40 .135 .306 .3T8 j.385Iat~soee. .0 .56,o 1.889,, :029 1.340,: 035 1.024, .018

.io 1 . 0062o5, .01135 21 2.602, o06 .1.38, o0o5

-I
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5.5. On VZanialV QeAtiom about PMot ,todi.LcatioA6

The results of our research suggest answers to some questions

raised bY Daniel (1959) on possible variants of the half-norml plot,

Ae wonders If "an invariable rule should be set up, using onaly some

fixed proportion of the smaller contrasts to estimate error". We

oppose the idea of using, a fixed number of contrasts in a single

replicate 2 factorial experiment to estimate error because of its

inefficiency when. ther't are only one or tvo real contrasts.

Another query is whether one should use the error contrasts to

form-a mean square error term. Since fitting a line to the error

contrasts yields a highly efficient, quick-and-easy estimate of 0,

we do not feel that it is necessary to form the mean square error

term.

Daniel also questions if one should "decline to use only higher-

order interactions for error since some plot-splitting is alnost

inevitable in multi-stage processes", This seems vin if the danger

of hidden plot-splitting is sizable, though this analysis would presnt

&azy other complication3 as well.

We feel that one should "insist on at least partial duplication

of 21)- experiments when no good previous estimate of error is available"

(Dan•iel, 1959), especially when the experimenter thinks that as many as

four real contrasts my be present when p-q = 4. Without the partial

duplication in these difficult situations, the error variation estivate

is badly biased when several real contrasts of any size, or a fev small-

to-mediuI-sized real contrasts, are present.

-,'_ 
M
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An alternative procedure which has been suggested for use when

as may as many as six or nine real contrasts are present in a non-

'4
replicated 2 factorial experiment is the chain-pooling ANOVA ((Holms

iod Derrettoni, 1969). In these sittutions the chain pooling pro-

cedure might be superior to the half-normal plot versions discussed

in this paper.

5.6 The Ifati-Noam, Ptot a& an Outtia Rejeetion Piouedew

Suppose we obaserve 15 random variables which are thought to be i.i.d.
N(Oiot) 2 n order to estimate a2. Hoever, if some of the observations

are outliers with means U j 0 we will vrnt to exclude these obsery i-I2
tions from the estimation of o2. Now, the location of outliers under

these cfrcestances poses the stoe problem as does the detection of

real contrasts in a single replicate 2 factorial experiment. Mhus,

the halt-nor-..Al plot can also be used as an outlier rejection procedure.

While doing pilot studies for the Main Study, ve exained the power

of the outlier rejection procedure (BCT) proposed by Bliss, Cochran,

and Tukwey (1956). The pilot stud results dewnstrated a serious defect

in this procedure. Although the BCT procedure is reasonably sensitive

to outliers uten only two outliers are present, it is almost useless as

an outlier rejection proceure when three or four are present. For

exame,, when four outliers, each distributed N(6ao 2 ). are p ir

the situation described in the previous paragraph, BCT detects approx-

instely 12% of them. Since all fifteen observations are used in the

denomintor of dCT's rejEction criteria, outliers "1 always contim-

Inate the denominator. The consequences of this contawination are mot

serious.

7
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Obviously, BCT is more adversely affected by an increase in the

number of outliers than is the half-normal plot. A suggestion based

on the haif-norAal plot results is to modify the BCT denominator so

that it does not include the larger observations. For instance, in

the situation described at the beginning of this section, a modified

denominator which might be of interest is the sum of the eleven observa-

tions closest to 0.0. This modification should make the procedure more

robust, though it will sacrifice some efficiency when only one outlier

is present.

We feel that there ace inadequate warnings in the statistical

literature as to the dire consequences such as the above which Ma

result from including outliers in the denominators of the test

statistic. Several of the conventional outlier rejection procedures

include all observations in the test statistic denominators. For

Sinstance. when searching for one outlier, Grubbs (1969) recomends
Xn1x

§ Tn = l-T where x the largest observation in the sample,
n 2 n

I 1 n-I

We question whether manf eperimenters appreciate ho-: drasticnaly the
sensit..vity of procedur-- such = T 3y be acffectcd by the i-Z'tion

n
of the test statistic denominator which occurs when two or three out-

liers are included in it. In general, our suggestion is to base the

test statistic danonin.ator on cnly thc smaller observations in order

to minimize the probability of contaminating the denominator.

EA
-~ - ~ -~-~--~4-~ -

A~ 1
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6. THE EMPIRICAL BEHAVIORS OF VERSIONS

X, S. AND R IN TYPE II SITUATIONS

7his section discusses the results of using the half-normal plot

to analyze experiments in Type II nituations, i.e., situations in

which there are real contrasts of two different sizes. The main

results for Type II situations are sumnarized in Tables 6.1 and 6.2.

6.1 l.i-StUuaton R1eutU

In order to isolate the effect of the presence of one size

contrast on the detection rate for one size m1 contrast in situation

1 we have .onstructed Table 6.1. Consider the section of

this table devoted to version X. The five rowf of this section re-
i present detection rate curves for version X under five different

sets of conditions. The first row gives d(1,m), for m = 2a, a, 6a,

and 8a in 1-situations; the second row gives :(l,ml;l;2a) for

=1 2a, 4a, 6a, 8a; etc.

To understand how the detection rate behaves in 1-1-situations,

we examine how d1 (1,4a;l,m2 ) varies as m2 varies from Oa to 8a by

considering the second column of Table 6.1. This shows that a size

ho contrast is more likely to be detected if it is the only real

contrast present than if another real contrast is present. This is

reasonable since the detection rate of all versions has been observed

to decline as the number of real contrasts present increases. As a

second real contrast of increasing size is introduced, we note that

the detection rate for a size 4a contrast drops at first from 0.14 to

0.35 for R and then rises to 0.1l as the size of the second contrast

"Vf
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STABLE. 6.1

jt[i Rett Sox One Size ,5. Contuat Whien 11e.l, Uze m2

Thece results are all for versions using 0.05 level critical
values.

• ~~2 -0 IC 8II0 •I- l • I-

Version m2

00 0.091 o.0.811 0.971

2a 0.oto 0.35 0.75 0.05

R 0o 0.97 0.38? 0.76 o.96
0.06 o0._1 0. A2 n.96

So. 07 o.41 n. 81 0.962

0 0.121 o.621 0.•Q6 1.00o
220 0.09 n051 0o.3 1.00

x ho 0.10* 0.53 0.03 0099

6a 0. op 0.57 o.c05 1.00
f k, 0. O o. 6;, o.m6 1. 002

00 0.11 o.62 0.06 1.002
Oa 0.01 0.651 0.061 1.001

22
S 2a 0. 08• 0.1 0i .02 1. •0

4ca 0.10 1.542- o. r14 1.00
26a 0.10 0.58 0.95 1.00

8a 0.10 0.62 0.96 1.002

'These detection rates are the detection rates in the resnective
1-situations.

These detection rates are the detection rates in respective
2-situations.

0.10ad (1,2a;1,4a) 2 Detection rate for the size 2o contrast in
situation(3.2a;l,40o), i.e., 10% of the size 2a contrasts present

in the 1000 simulations of situation (1,2o;l,ha) were deteated.
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increases to &j. The explanation of .ne rise is that as m2 increases

in size, the second real contrart. is more likely to be detected.

Consequently, the size ho contrast is exanined for sia1nificance more

often and is tore likely to bc detected.- The detection rate for the

size 4 contrast in the Dresence of an additional, large real con-

tvast is, however, less than the detection rate in (1,4o0). The

reason is as follows. In (1,4a) the real contrast is present with

14 null contrasts, whereas here the size 4a contrast is present

-j with one large real contrast, i.e., the second real contrast, and

only 13 null contrasts. Thus, less information to estimate o is

available than in (1,4a) and ve expect to see a slightly smaller de-

tection rate for the size 4o coutrast than in (1,40), even ohen the

second real contrast is large. The dips and subsequent rises in

detection rate occur, to within sampling errors, for every version

and every size contrast. Though consistent, these dips and rises are

not large.

j Similar corments hold for the 2-2-situation results ":hich are

given in Table 6.2. Hovever, in these situations the dips and rises

previously noted are large.

I

i 7. NOMINATION AND THE HIALF-NORIAL PLOT: SO'HE COITRIIO.NS

In analyzing experiments lacking a classical, internal estimate

of error variance, another approach is to decide a priori to combine

the hilher order interactions to form an estimate Zif error variance.

This a-prorch, ihich ie refer to as "nomination", has been idely

used by experimenters doing single replicate factorial experiments or i

- .Z
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TABLE 6.2

Vetection Rate. ou the Tk, Size m_ CoUautat When Tw, Size u2

Contm~A&t au'. WAao Pk4eilnt in the E"UpeAk.iextt

These results are all for versions using 0.05 level critical

2a 140 60 80
Version

Im2
.062 .382 0.812 o.6

2 0.0OX4 0.24 o.63' 0.90

R 4a 0.04 0.25 0.60 0.88

6a 0.06 0.31 0.61 0.39

Be 0.05 0.32 0.72 0.914

0o 0.09ý 0.53 2 0.95 2 1.002

2c; 0.07' 0.29 0.82 0.99x X 0 0.05 0.21• o.61 0.91

6-3 0.08 O.4O 0.72 4 0.91
13a 0.07 o.45 o.86 0.95h

"0O7 0.082 0.542 0.952 1.002

- m.04' 0.33 0.85 1.00

S - 0.06 0.27 0.77 0.98
1460 0.08 0.49 0.86 0.99

86 0.07 0.54 0.95 1.00k

2These detection rates are the detection rates in the respective
2-situations.

These detection rates are the detection rates in the respective

o0.63sd2(*:,2oi;,6o1) = Detection rate for the size 6oy contrasts in

situation (2,2o;2,6o), i.e., 81% of the size 6o real contrasts
present in the 1000 simulationzv of situation (2,2o;2,6o) were
detected.
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their fractions in well-researched areas, such as agriculture,

where there is ample evidence from earlier experiments that the real

effects of such high order interactions are usually negligible.

A nomin•ation procedure which is illustrated by an example in

Davies (1954, p. 274) consists of the following steps:

(1) The experimenter assumes that certain contrasts, the
LA

I ,, 2
nominated" contrasts, are null and constructs SN

an estimate of j , from them.

(2) Each of the remaining contrasts is tested for significance

2by dividing its square by sand comparing the result o

a rercentage point of the F-distribution.

Since the results of the 'fain Study indicate that, barring

the breakdotm of a procedure, increasing the EER and ERPE results in

an increase in detection rate, ie shall compare in this section the

half-normal plot and a nomination procedure 'with similar EER and ERPE.

For the EER of the nomination procedure to be comparable to the EER

of the half-nornal plot using .05 level critical values, the 0.5%

percentage point of the appropriate F should be used, while the 1.0%

point should be used if iwe desire the MRPE's of the two procedures

to be comparable.

Another difficulty arises while attempting to compa'"e nomination

to the hialf-normal -plot: In order to calculate the detection rate of

the nomination procedure from taoles of the noncentral F- or t-

distribution, ire must make the basic assiuptioa that the experimenter

nominated only null contrasts. This assumption biases the results n

-I
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favor of nomination. If it is true, all the real contrasts will be

tested for significance, This assumption precludes any contamination

by real contrasts of eitber the test statistic denominator used by

nomination or the final estimate of error variance given by nomination.
2

Furthermore, s- will not become increasingly inflated as the number

of real contrasts increases.

We let H(e,F(l,e,p)) denote the variant of nomination in which

e contrasts are nominated and F(le,p) is used as the critical value.

1 '4
In this section ve restrict our attention to 2 factorial experiments

and two nomination procedures: one nominating five error contrasts,

11(5,F), and the other nominating ten, N(lO,F). By interpolation in

Tang's tables (1938) and in the non-central t-tables of Resnikoff and

Lieberuai (1957), 1re can calculate the poirer of .(5,F) and N(10,F)

in (l,2), (1,4a), (1,&v) using various F-percentage points as

Scrit.cal values. These results are given in 'able 7.1.

Although the half-normal plot has been unfavorably conpared

to :nomination procedures in this section, it gives a very good

account of itself with respect to detection rare when compared to

nomination procedures with similar EER and ERPE. Te results of

this section indicate that the half-normal plot has a distinctly

2 arger detection rate than a nomination procedure using the same

T if the exreri.nenter's prior information i.1i only allow him to

nominate 3- and 4-factor interactions. Houever, if he can accurately

nominate ten error contrasts, nomination !Aill have a larger detection

rate than the half-normal plot if four real contrasts are present.
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TABLE 7.1

tec t•on Rat oj •J(5,F) amd !(IO,F)

(Nominating all 3- and 4-factor interactions)

Critical Situation

Value (l,2ci) (i,4) (U,6 0)

F(1,5,.05) .34 .86 .99
2 F(1,5,.O1) .13 .55 .91

F(1,5,.005) .08 .39 .79

1N(IO,F(l,1O,.))

Nominating all 3- and 4 -factor interactions and 5 of the 6

riia2-factor interactions)

:•Critical Situation

Val,2u) (1,4o) (i, 6c)

F(1,10,.05) .44 .93 1.O0

F(1,l0,.Gl) .19 .77 .9q

F(1,I0,.005) not .65 .97
tabled

I--
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8. CONCLUSIONS AND RECO*M ATIONS

8.1 The HaI6-No'ma Ptot and 2 FadoJiaX ExpekimexU

Since the half-normal plot is intended to indicate which con-

trasts are real and to estimate a, we will Judge it by these standards.

As regards detection rate, we observe in Section 5 that the half-

normal plot using .05 level critical values has a detection rate

as large as 0.12, 0.62, 0.96, and 1.00 in 1-situations for contrasts

of size 2o, 4a, 6a, and 8a, respectively; 0.09, 0.54, 0.95, ant 1.00

in 2-situations; 0.04, 0.30, 0.86, and 1.00 4-situations; and

0.01, 0.13, o.43, and 0,76 in 6-situations. Here, we are reporting

only the results for the version having the highest detection rate

in each situation. These results lead to our conclusion that the

half-normal plot is a suitable procedure for analyzing 2k factorial

experiments, provided that four or fewer real contrasts are present.

The decline in detection rate as the number of real, contrasts

increases should be noted. The most drastic decrease in detection

rate occurs as the number of real contrasts increases to six. In

6-situaticons the only version with any detect~ion rate at all is R;

ite detection rate is reported in the previous paragraph. The

other versions have a detection rate of at most .03 in 6-situations.

8.2 A compai.zon o6 the 1a•to-No,',tC Ptot Vea.onA in VAioo6 Sitaoh n

In situation (0) all versions are quite similar.

In 1-situations versions X and S are similar to each other and

superior to version R in every way: they have larger detection rate-1

and yield less biased, less variable, final estinates of a.

A'



In 2-situations version R again has little to recmeend it.

SHowever, it does compare to the other versions slightly better in ?-

situations than in 1-situations. The performances o•" versions X

and S are similar.

In 4-situations version S is the best version in terms of

detection rate and estimation of a. *

In 6-situations there is little to recommend any version.

Version R is the only _.-e which does not collapse. Ho':ever, its

detection rate is much smaller than it was in 4 -situations and its

final estimate of a is badly biased.

Of the three half-normal plot versions considered we recomend

version S on the basis of its steady performance in 1-, 2-, and 4-

situations. If the experimenter expects more than four real contrasts,

we advise him to consider whether he can afford an EER of .20 or .40.

If he can, we recommend version R with .P0 or .4O level critical values.

Before acting on this rfcomendation, the experimenter would be well

adviwsd to consider i'hether a second replicate or a larger fractional

replicate might pay for itself by dramatically increasing the detection

rate.

S8.3 16o•ination veusw the 1a•Cj-;!oAm-zZ Ptot

-As described in Section 7, nomination has a smaller detection

rate than versions of the halt-normal plot with equivalent EER's, un-

less the experimenter can accurately nominatc ten error contrasts.

The half-normal plot estimates o mor efficiently than 1(5,F) when

the real contrasts are large (8a). However, if the contrasts are

i t

- ---.- ~,~-~--- ~-~.-~- --.- ---i
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onlY medium-sized and if the nomination is accurate, N(5,F) is more

efficient than the half-normal plot versions examined in the Main

Btudys The procedure N(10,F) is as efficient as the half-nor=ml

plot even when the real contrasts are large.

If equivalent EER's are desired, our recommendation is to use

the half-normal plot unless almct all null contrasts can be

accurately nominated.
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